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Abstract

In this paper, we analyse the energetics of a multilayered structures like, for instance, B/A/B/Agupsrace- 1t 15 well-
known that a coherent pre-strained B layer on an A substrate will generally results in a corrugation of the free-surface
of the B layer. This behavior is the result of stress relaxation in the B-layer and the phenomenon is known as the Asaro-
Tiller-Grinfeld instability. We extend the methods used for a two-layer structure to a multilayered structure and the
main application is the vertical correlation in superlattices. We analyse the energetics of a corrugated B layer which is
grown on a A/B/Agupsirate; Where the A layers are flat but the intermediate B layer is already corrugated. We show that
the self-organization of the second B layer, due to elastic interactions in the bulk, depends on the corrugation of the first
B layer and the generic best situation is that of a top-on-top (also called correlated layers) vertical alignment. We also
prove that the interaction energy between two successive B layers attains a maximum at a critical thickness of the
intermediate A layer. This interaction energy has the same order of magnitude as the elastic energy release due to free-
surface corrugation at each upper surface of a B layer.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Grinfeld’s method (Grinfeld, 1986, 1991, 1993) turns out to be extremely fruitful to explain various kinds
of instabilities in numerous fields of physics and chemistry. For example, if a coherent thin film is grown on
a single-crystal substrate by advanced growth techniques such as molecular beam epitaxy (MBE) and if the
film lattice parameter differs from that of the substrate by more than 2%, the thin film growth mode
generally changes from a layer-by-layer two-dimensional (2D) mechanism to a three-dimensional (3D)
mechanism leading to the formation of periodically auto-assembled islands. This phenomenon takes place
when the film thickness has reached a critical value, i.e., the so-called 2D-to-3D growth mode threshold. In
other words, such a coherent island formation is favourable only if it guarantees more misfit strain energy
relief than the concomitant surface energy increase.
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In this paper, we will extend Grinfeld’s approach to the case of a multi-layer heterostructure, viz., a
periodic stack of thin films alternately made of two different mismatched materials on a semi-infinite
substrate. Such a strained-layer superlattice is widely used in optoelectronical devices made from III-V
semiconductors. It is presently well accepted that, when the multi-layer is a succession of coherently
strained island layers (issued from 3D growth mode) and of spacer layers lattice-matched to the substrate,
the strain distribution due to a buried island layer favours a top-on-top island growth (Xie et al., 1995;
Tersoff et al., 1996; Springholz et al., 1998; Zhang et al., 1999; Priester, 2001) leading to a vertical align-
ment. For actual systems grown along (1 0 0) substrates, experiments in Solomon et al. (1996), Teichert et al.
(1996), Legrand et al. (1999), Wu et al. (1997) and Lita et al. (1999) actually show this vertical alignment
between islands belonging to successive layers. However, it has been recently claimed that this widely found
vertical correlation could be affected by strong elastic anisotropy leading to non-top-on-top vertical island
stacking (Spencer et al., 2001; Shchukin et al., 1998; Holy et al., 1999). Moreover, another study has shown
that such a strained-layer superlattice can be either stable or unstable versus growth, and when unstable, the
layer modulation can be in phase, out of phase or complexly related (Shilkrot et al., 2000).

Motivated by the above-mentioned underlying physics, our approach in this paper is based on a
generalisation of Grinfeld’s method (Grinfeld, 1991). It consists in a comparison between the elastic energy
stored in a given multi-layered structure and that of a reference state, extending a previous result in
Danescu (2001).

The paper is organized in two parts. The first is devoted to the continuum mechanics background and
general results valid for multi-layered structures. The main energy estimate for two-layer materials is Eq. (1)
which is straightforwardly extended to the case of multi-layered materials in Section 3.2. From a quanti-
tative estimate we have studied, using a Fourier technique, a first order problem whose solution provides a
valid result (Eq. (11)) for small amplitude perturbations. The second part is dedicated to applications in the
semiconductor crystal growth field. The first case to be studied is the growth of a cap-layer on a strained
film: we predict that, as a consequence of our energy estimate, the cap-layer regains 2D growth giving a flat
cap-layer surface morphology. The second application deals with the controversial problem of correlation
versus anti-correlation island organization in multi-layered heterostructures. We show that, in agreement
with most experiments, correlation is the generic situation. As an additional result we show that there is an
optimum spacer thickness in a periodic multi-layered heterostructure for maximum interaction between
two successive strained layers.

2. Preliminaries

In this paper, we consider the case of a multi-layered material as illustrated in Fig. 1. The successive
layers labelled 1,...,L and heights 4,,..., h; are alternately materials of types A and B on a semi-infinite
substrate assumed by convention, to be of type A. Materials A and B belong to the same crystallographic
space group but differ by lattice parameter. Moreover, all interfaces, labelled 21, ...,2;_| (except the last-
layer free-surface) are taken to be coherent. This means that the crystal lattices on contact are distorted in
such a way to match each other on the interface even if they are lattice mismatched when in their natural
(undistorted) configuration. Since our main application to physics concerns the III-V or IV semiconduc-
tors, both A and B are assumed to be linear elastic materials with cubic symmetry (zinc-blende for I1I-V
semiconductors and diamond for IV semiconductors). Although the general results of Section 3 also hold
for orthotropic materials (see Danescu, 2001), for simplicity, computations in the following are performed
only for cubic materials.

To describe a multi-layered structure with flat interfaces, let us introduce the following notation: let L > 1
be an integer labelling successive layers; as explained above the successive interfaces, denoted X;, are of type
B/A for even i and of type A/B for odd i. Their vertical locations are denoted /; with respect to the interface
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— /f third B layer; z € (ha, hs)

«—— second A spacer; z € (hg, hy)

—— second B layer; z € (hg, ha)
~—— first A spacer; z € (h1, h2)
—— first B layer; z € (0, h1)

<—— A — substrate

— E=(-Xo,Xo) X (~Yo, Y0}

Fig. 1. Diagram of a multi-layered structure with flat interfaces: the meshed interfaces are B/A interfaces (denoted X; for even i), while
unmeshed ones, are B/A interfaces (denoted 2; for odd 7). The thickness of a B layer is small compared to that of spacer layers A. The
vertical positions of the interfaces, from the first interface B/Agpsiace are respectively 4y, h,, . . . and the lateral boundary is denoted Sj.

of the first B layer with the A substrate. Let ~ be a rectangle (—Xp,Xo) x (=¥, %) and denote Qp =
2 x(0,h), So =0 x (0,h), Q, =2 X (hy_1,h,) and X, =X x h, fora=1,... L.

For the description of a multi-layered structure with almost flat interfaces we introduce L smooth
functions @, : 2 — R with zero-mean value and X-periodic, and for convenience, we shall impose
maxy |®,| < min(h,/2,h, 1/2) fora=1,...,L — | and maxy |®,| < h;/2. We denote Q=2x (0,h,+ D),
Sy, = 0 x (0, + &), Q,=2x (hy_1 + @y, hy + @,) and ,=2x (hy + ¢,) for ao=1,... L. The
condition regarding the mean value imposed on functions @, expresses the fact that the amount of material
in both situations, with flat interfaces and with almost flat interfaces, is the same.

For a linear elastic material with cubic symmetry group and preferred axes (x, y,z) the Hooke tensor has

the general form
Hijig = 2001 + (0161 + 0416 jx) + 1(0:x0 0101 + 0330, 05 01y + 0120204262),

thus, the non-zero components of the Hooke tensor are (up to well-known permutations due to the
symmetry) in cartesian coordinates

H’”‘xx = H)’W}’ = szzz =i + 2,“ + n,
[—[xxyy = Hxxzz =H ez = )\,,

[—Ixrw(y = szxz = H)zvz = 2,“

In the following we shall use (HA, Jas ta,Na) and (HB, /B, Iy, M), to denote the elastic constants in ma-
terials A and B respectively.

To take into account the misfit between materials A and B, the constitutive relations between the Cauchy
stress tensor, denoted o, and the strain tensor, denoted e, are supposed to hold in the form

o = H"[¢]
in the substrate and even-numbered layers (i.e., in material A), and
o =H®e + €]

in odd-numbered layers (i.e., in material B). The misfit strain € takes into account the mismatch between
materials A and B only on its in-plane (x,y) components. Thus, in a configuration where all interfaces are
flat, the vertical deformation will be such that the vertical misfit stress 6®e, = HB[eO]eZ vanishes. If we

denote €, = efy = m, considering as usual that the misfit shear vanishes, i.e., € =0, a straightforward

Xy
computation shows that the misfit stress is such that ¢.. = 0, = 6. = 0, =0, and
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& =c =" =m|2/.+2u+ —27/12
w = O T O A T e T |

Consequently, with flat interfaces, we are in a typical plane stress situation where

e=m 8 (1) 9, |, e=dl0 1 0],
PRy 000

also called the pseudomorphic case by physicists.

3. Energy estimates for heterostructures
3.1. Estimate for the bulk energy

We start with the simplest case of a two-layer material, i.e. a structure A/B on an A substrate, also
denoted in the following by A/B/Agupsyae. Following an idea fully developed in Danescu (2001), we shall
compare the elastic energy stored in a structure with flat interfaces, denoted in the following W, with the
elastic energy stored in the same structure but with almost flat interfaces, denoted .

In the reference case, the elastic energy W, can be computed once we have the solution to the following
boundary value problem

(2y): Find u : Q, — R’ solution of

(a) dive =0 in Qo,

(b) on =0 on 2,

(c) u=0on %,

(d) u=1uP" and t = t***" on S,
() [ul=0on 2,

(f) [6n=0on X,

where uP*"- and t***" are respectively a 2-periodic and a X-anti-periodic boundary conditions.
Under previous assumptions, the unique solution of problem (%) is u = 0, i.e. the relaxation is vertical
and the stored elastic energy is easily shown to be

o VOl(.Ql)
2
In the case of almost flat interfaces, in order to compute the stored elastic energy W, one has to solve the

boundary value problem
(#,): Find u : Q, — R? solution of

4 HP[€"] : €.

(a) dive =0 in Q,

(b) en =0 on 2,

(c) u=0on 2,

(d) u=1uP" and t = t***" on S,
() [uf=0o0n X,

() [6Jn=0o0nZ%,

but obviously, the unique solution of this problem is not u = 0. Grinfeld’s method allows W to be com-
puted by comparison with W, as follows: note that, by definition
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1 1
Wo== | H’le+€]:(e+€)dV +=

H[¢] : edV.
2 /s 2/ (€]

So that integrating by parts, using the equilibrium equations and the periodicity conditions on the lateral
surfaces, we have

1 1
VV2:—/ aBn~(u+eox)dA+—/aAn~udA.
2 Jogy 2 Js
Using the jump conditions on interface ¥, the periodicity and the boundary conditions, we obtain

Wz:f/ o®n - 'xd4,
2 29,

and again integrating by parts

szl/aB:eOdV.
2 Jg,

In addition, the symmetry of the Hooke tensor gives

1
W=

1
5 /. HB[eo]:eodV—i——/ u-HP[e"nd4,
Q

0Q,

so that, we easily obtain: '

1
W2:W0+—60:/u®ndA. (1)
2 5

This result shows that only the values of the displacement at the interface %, contribute to the difference
W, — W5. This means that whatever the displacements at the upper-surface 2, (that surface is stress-free),
the difference W, — W5 will not be affected. The physical interpretation of this result will be fully discussed in
the second part of this paper but let us just note here that there will be no reason for corrugations to appear
at the free-surface 2, (upper surface of the first A layer) because the surface energy will always tend to
smooth the free-surface.

3.2. Energy estimates for multi-layer materials
The computation leading to formula (1) can be easily generalized to an arbitrary number of layers. Using

the method detailed above a straightforward computation provides the following general estimate for the
elastic stored energy:
1. For even L:

R L-1

W =W, + ’“ Z / u®n. (2)
2. For odd L:

W="W+ (- 'H Z/u@n (3)

By convention, in (2) and (3) all normal fields n; are oriented toward Q.

! We use a ® b for the second-order tensor that acts on a vector v as (& ® b)v = (b - v)a.
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3.3. Small amplitude 3D perturbations

In order to use (1) for a quantitative estimate of the second term in the right-hand side one has to solve
the full problem £,. Although this is a straightforward task (e.g., using numerical tools) for a two-layer
heterostructure because of the linearity of the problem, for multi-layered structures, it appears to be a
problem of fast increasing complexity in the full three-dimensional formulation. However, for almost flat
interfaces the second term in (1) is small, favouring an approximate estimate using a linearized version of
the problem 2,.

Therefore, we shall consider solution u of %, as a small perturbation of solution u = 0 of 2, i.e.

u=¢éu

and linearize problem 2, as follows: we fix small 2-periodic functions e®(x,y) and e®,(x,y), so that the
normals n; and n, to 2 and 2,, respectively, are

n, = e, + &n,, 4)
for o= 1 or 2. The linearized version for the problem 2, is
(2,): Find u : Q) — R’ solution of the boundary value problem:
(a) dive =0 in Q, R
(b) Condition (#,) — (b) becomes e, = 0 on 2,, and gives at the first order
H*[€e.=0 on X,
(c) u=0on 2,
(d) uw=u"" and t = t**" on S,
(e) [a] =0 on Xy,
(f) Condition (2,) — (f) is equivalent to
[SHA [€] — cH"[® + €]]h; = 0
and taking into account (4) and the fact that 6’e. = H® [€’]e. = 0, one finds that, at the first order, on X,
we have
(H*[e*] - H"[€"])e. = o"n.

Finally, note that the small-amplitude approximation is pertinent for semiconductor nanostructures
obtained by 2D-3D growth mode transition because usually:

(i) the periodicity in the (x, y)-plane of the B-layers is ~300 A (attributed to strained-induced lateral auto-
organization of so-grown nanostructures), )
(i) while the undulated part of the B-layer is ~10-20 A high,
(iii) the thickness of the spacer (A-layers) is in the ~50-300 A range.

3.4. Fourier analysis for the linearized problem

For the linearized problem Z, that has been just established we shall use a Fourier series technique, and
the energy estimate (1) becomes

2
2
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First, consider the development in double Fourier series in the generic case of a (x, y)-periodic function @
(either @, @,, or any @, in the multi-layered case) on [0,2n] x [0,27] as

d(x,y) = Z S [Aum €08(nx) cos(my) + B, sin(nx) cos(my) + C,, cos(nx) sin(my)

n,m=0
+ D, sin(nx) sin(my)],
where the coefficients 4, are defined by
1/4 forn=m=0,

Iom =14 1/2 forn=0,m=1 orm=0,n>1,
1 forn=1 m=>=1

and the (n,m) components of the Fourier series of @ are defined as usual as
1

Ay = = @ (x,y) cos(nx) cos(my) dxdy,
[0,27]x[0,27]
1 .
B == @ (x,y) sin(nx) cos(my) dxdy,
T J[0,2n)x[0,27]

1 .
Com = = / ®(x,y) cos(nx) sin(my) dxdy,
[0,27] % [0,27]

D, = % & (x,y) sin(nx) sin(my) dxdy.
[0,2x)x [0,2x]

In the following, we shall use the compact notation

¢ = EOO: P = Tms

nm=0

where @,,, denotes the (n,m) component of @ given by

Dyn = Ay (Aums Bumy Cumy Diam)
and 7, 1s defined as

T,m = (cos(nx) cos(my), sin(nx) cos(my), cos(nx) sin(my), sin(nx) sin(my)).

The first-order derivatives 0, and 0, act as linear applications on a generic scalar function @ and if we
introduce

0 1 0 0 0 0 1 0
10 0 0 0 0 0 1

D=1y 0 0o 1" P2=|-1 0o o o
0 0 -1 0 0 -1 0 0

we have (D*)* = —1, (D*)’ = —I, and 0,0 = Ym0 1D @) - Ty 0@ = 375 m(Dy @) - Ty
Finally, note that although the functions @, are defined on [0, 2n]>, we actually have an (x, y)-periodicity
on a typical domain [—Xj, Xy] X [—Yp, ¥5]. In that case the Fourier coefficients have to be computed as

= g5 #6008 (3 Joos ()
A =—— [ ®(x,y)cos | nn— |cos | nn= |dxd
XoYo Js (.5) Xo ') 7
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and similar expressions for Bom, etc. The only change to be made in the formalism presented above concerns
the form of the coefficients of the differential operators 0, and O,, where n and m should be replaced by
nn/X, and mn/Y,, respectively.

Turning back to our main purpose, the general field equations are

(;L +2u+ n)ux,xx + :“(”xw + ux,ZZ) + (’“ + :u) (uy-,yx + quZX) =0, (6)
(A + 20+ )ty + 1ty + 1y 22) + (A4 1) (hery + ) =0, (7)
(A4 20+ Mtz + (e + o) + (A4 1) (g + thyz) = 0. (8)

Each projection on the (n, m)-component of a double Fourier series becomes a coupled system of ordinary
differential equations completed by the boundary conditions and interface conditions.
We denote by u,, the (n,m) component of displacement , i.e.,

ﬁnm = (U;);m(z) ' Tnm7 Ui)z}m(z) : Tnm? an1(z) : T;"")?
which introduces 12 unknown functions. It is straightforward to rewrite the field equations as

Mnm U” Jr NVI”I U,

nm nm

+ anUnm = 07

where the prime denotes the derivative with respect to z and the (12 x 12) matrices are defined by

Mo 0 0 0 N
M, =| 0 M) 0|, Ny,=|[0 0 NI,
o 0 M NG ND0
P(l) P(4) 0
P, — NG ,
i e

with 4 x 4 blocks entries given by
M) =pul,  MJ) = (L4 2u+n)l,

nm nm

N0 = (A+wnD', N2 = (A+ pmD’,

nm nm

P, = —((2+ 2+ n)n’ + pm*)L,

nm

PO = —((A+2u+nm* + pn®)I,

nm

PY) = —u(n® + m?)l, PY = (J + p)ynmD*D’.

Computation of the (n,m)-components of the stress tensor gives

Gxx = <(/1 + 2:“ + n)nD’CU:m + /lmD}Ur}l}m + }“(Urzzm)/) : Tﬂm?

Gy = ((/1 + 2+ n)mD'U! + nDU* + )»(Uim)') “ Toms

0z = (2 204 M)(U3,) + AnD U3, + mD'U},) ) - Ton,
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—,LL(I’IDXUV +mD‘UX ) * Lam,

nm

nm nm

. (nUUZ +(UF )’) -
U (mDV[];m + (Uz/m),) ’ T;’lm?

so that both boundary conditions on the free-surface and interface conditions on the stress, which both
involve @(z)e., can be expressed as linear combinations of U,,(z) and U/, (z), in the form

S"l"’l Unm (Z) + anlU;[nl (Z) ’

where
0 0  unD" MY o 0
Snm = 0 0 :umDy ) Qnm = 0 ME,I,,Z O
inD* AmD” 0 0 0 M®

3.5. Boundary conditions and energy estimate

The field equations (6)—(8) thus given have piecewise exponential solutions with respect to z, and inte-
gration constants have to be obtained via interface and boundary conditions. The solution for the (n, m)-
component in the a-layer will be denoted %% (z) = (U (2), (U (z))") so that

U (2) = E (2) U (h),
where &% (z) = exp((z — h,1)E”) and
, 0 1
E; = [_(Mm)lP(a) _(Mm)lN(a)} :

This introduces 24 integration constants %) (h,_;) for each «. In the following it will be convenient to
denote the 12 x 12 blocks in the expression of %'*)(z) as

F® (z) G® (z)
@@(‘x) — nm nm . 9
SR i ?)
At z = 0 condition 2,(b) gives
U, (0) =0

and the continuity of the displacement at z = /; and formula (9) give

Gy, (h)(U},)(0)) = U (hy).

nm nm

The free-traction condition at z = A, is
SPFS) (ha)US) (1) + GG (k) (U (1)) ] + QP HE) () UL () + I8 (ha) (UL (1)) = 0

and the continuity of the traction at z = A is expressed as

[S(I)G(l)( ) + Q(l) (1)( )](U(l)(O))/ _S@y® (hl) _ Q(Z)U(Z)(hl)l

( nD ¢nm7 mD ¢nm’0) (10)
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To summarize, the boundary conditions can be expressed for a fixed couple (n,m) as

I 0 0 u(0) 0

0 G -1 0 (UM (0)) 0

0 sHg +Q(1>J<1> _s® *Q(2> ’ U(2)(h1) KO |

0 0 SAOE® + Q(2)H(2) S@g® + Q(Z)J(2) (U(Z) (hl)), 0
where K" denotes, for each fixed couple (n, m), the right-hand side of (10), viz.,

K" = ¢°(=nD, @) —mD, ) 0),

while GV, JU, F?, G?, H?, J? are here, in short, G (h)), IV (h,), F@ (hy), G (hy), H? (hy), J? (hy)
respectively. Turning back to formula (5) we obtain for the elastic energy the estimate

0 oo

Tom 25 3 [ U T (05 T (U - T (D Tty
[0,2]

n,m=0

and taking into account the orthogonality of the components of 7, a straightforward computation shows
that
0 oo
W, = W, +e2% 3" DU, () + mD U, ()] - o, (11)

n,m=0

where @,,, are obtained by dropping the A,, in the expression of ®,,.

4. Applications in semiconductor crystal growth field

Throughout this part, numerical calculations will be performed for three typical couples of semicon-
ductors, viz., Ge/Si, InAs/InP and InAs/GaAs, but this choice does not affect the validity of the above
developed method for other types of materials. Therefore, we have collected in Table 1 all the physical data
needed for the numerical applications, i.e., the lattice parameters (in nm) and the elastic constants in 10?
GPa (see Landolt-Bornstein, 1982).

It is straightforward to check that a Ge film is —4.57% compressively strained on a Si substrate, an InAs
film —3.2% compressively strained on an InP substrate and an InAs film —7.17% compressively strained on
a GaAs substrate. The correspondence between the elastic parameters in Table 1 and those used in the first
part of this paper is the following:

A:Cu, ,u:C44 and l’]:CU —C12—2C44.

Table 1
Numerical values for lattice parameters, elastic constants and anisotropy coefficients for materials considered in the present numerical
simulations

Lattice parameter Ch Ch Cy o
Si 0.541 1.657 0.639 0.796 0.46
Ge 0.565 1.240 0.413 0.683 0.49
InAs 0.605 0.832 0.452 0.395 0.70
InP 0.586 1.011 0.561 0.456 0.68
GaAs 0.565 1.190 0.538 0.595 0.59

The lattice parameters (in nm), the elastic constants in 10> GPa. The anisotropy parameter « is defined in (12) and vanishes for an
isotropic material.
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Furthermore, for cubic materials an anisotropy coefficient o can be defined using either the formula

, — (2Cu+ Ci = Ci)(Cri +2Cn) (12)
2C44(C11 + CIZ)

or using classical linear elasticity notations,

oc—l l+v 1
B E 2G|’

where E is the Young’s modulus, v is the Poisson ratio and G is the torsion module, so that, for an isotropic
material o = 0.

Because in a semiconductor crystal, atoms belonging to inner atomic layers far enough from the surface
are almost completely unable to reorganize themselves on the crystal sites (because of the activation energy
required to break the strong diamond or zinc-blende chemical bonding), buried interface morphology is
always considered to be frozen in the following.

4.1. Application (I): growth of a cap-layer

As mentioned in Section 1, when a B layer is coherently grown on an A substrate for example by MBE,
the B layer first grows layer-by-layer (2D-growth mode) with an almost flat surface morphology up to a
critical thickness above which the growth mode changes from this 2D-growth mode to a 3D-growth mode
characterized by the formation of coherent islands. These islands are regularly distributed either directly on
the A-substrate surface or on a flat B layer (in fact, part of the 2D-grown B layer). This fraction of the B
layer which remains flat is called the wetting-layer. This growth mode transition is quite well understood via
the classical explanation given by Grinfeld’s method (Grinfeld, 1991; Danescu, 2001).

The next step in the experimental process is generally to grow an A cap-layer on top of this B/Agupsirate
heterostructure to achieve an electron quantum confinement in the B layer (which in that case becomes a
quantum well in optoelectronic terminology). This A cap-layer is usually lattice-matched with the substrate
and therefore mismatched with the buried B layer. There is a lot of experimental evidence showing that
during its growth the A cap-layer gradually smoothes out and finally recovers a flat 2D-growth mode even
if it had an initially undulated surface (because of the underlying B layer). We shall show in this subsection
that according to the above developed formalism, this 2D-growth mode recovery for the A cap-layer can be
seen as a straightforward consequence of elastic relaxation in a multi-layered heterostructure.

Let us recall that we have already demonstrated in formula (1) that in a two-layer heterostructure A/B/
Agubstrate, the elastic energy difference W5 — W, depends only on the displacement on the buried A/B interface
(previously denoted X,). However, the surface energy must be taken into account. Considering that the
surface energy is almost proportional to the developed area of the upper free-surface (denoted 2»), we
conclude that the minimum total energy of the system, i.e., surface energy plus elastic energy, is fully de-
termined by the surface energy minimum, that is to say, is obtained for the flat-free surface morphology. In
other words, the cap-layer surface smoothes down as the cap-layer grows, a qualitative result in agreement
with experimental results.

To go further, we have implemented the method developed in Section 3, solved the linearized elastic
problem (#,), and finally computed the energy release using formula (11) for the three above mentioned
systems: Si/Ge/Si(1 00), InP/InAs/InP(1 00) and GaAs/InAs/GaAs(100). Note that in this part, we actually
compute AW = W, — W, (instead of AW = W, — W,) so that an energy release is achieved when AW is
negative in agreement with the convention commonly used by physicists.

In the present case, the system W, _under consideration is a reference domain 2 of a stress-free A crystal
with spatial dimensions 200 A x 200 A. The geometry of the interface &, between the first B layer and the A
cap-layer involves only one Fourier component
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Fig. 2. Elastic energy release as a function of the spacer thickness in a Si/Ge/Sigypsirate Structure; the spacer thickness 4, € (12,200) A
and the thickness of the first B layer, denoted 4, is 12 A. A scaling factor &* should be considered for comparison with the experiment,
related to the amplitude of the perturbation; here ¢ = 107!,

@ (x,y) = sin (%n) - sin (ﬁn)
for computational simplicity (but note that this does not mean any loss of generality as may be seen from
Section 3). The geometry between the thin film B and the Agypsate, previously denoted Xy, is assumed to be
flat. The reference system #} is a system with the same amount of material but with all interfaces flat.

First we chose a typical thickness maximum 4; = 12 A for the B layer and we varied the thickness 4, of
the A cap-layer in the range (12, 200) A, in order to analyze the effect on the elastic energy release. The
normalized energy differences AW (negative, as expected) versus the cap-layer thickness /4, are plotted in
Fig. 2 for Si/Ge/Sigupsyrate- The results obtained for InP/InAs/InPgypsrare and GaAs/InAs/GaAsgpsirate €S-
pectively, have the same qualitative features.

At the beginning of the A cap-layer growth, AW strongly increases, indicating that part of the energy
release obtained by undulating the B layer is now partially wiped away for the system because of the
mismatched interface between the A cap-layer and the B layer. The B layer no longer has a free surface able
to relax elastic energy. However, AW tends to an asymptotic negative value indicative of an energy release.
This upper bound for the energy release clearly depends on the geometry of the buried B layer.

4.2. Applications (II): optimal vertical self-organization

Today, stacking processes are widely-used approaches to improve strain-induced quantum island self-
organization. They consist in the over-growth of a new B layer on the A/B/Agupsiraie heterostructure dis-
cussed above, yielding to a new B/A/B/Agupsuate heterostructure. Consequently, the previous cap-layer is
renamed and becomes a spacer-layer since it is now in between two B layers. On the one hand, such
a stacking process strongly enhances the lateral self-organization, a fact that can be perceived here
as an improvement of the modulation periodicity. On the other hand, the strain distribution due to the
islands of the buried B-layer induces a vertical alignment of the latter with those of the above grown B-
layers (Xie et al., 1995; Tersoff et al., 1996; Zhang et al., 1999; Priester, 2001). This top-on-top situation will
be called in the present formalism in-phase or correlated. As an illustration, Fig. 3 represents three suc-
cessive vertically correlated layers (left picture) and three successive vertically anti-correlated layers (right
picture) respectively. If the stacking process is repeated to make superlattices from the elementary motif, it
usually results in vertical heaps of well-organized islands.
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Fig. 3. A generic example of three vertical correlated layers (left picture) and three vertical anti-correlated layers (right picture).

For convenience, Fig. 3 captures only the shape of the undulated A/B interfaces, all B/A interfaces being
flat. For systems grown along (1 00) substrates, experiments Solomon et al. (1996), Teichert et al. (1996),
Legrand et al. (1999), Lita et al. (1999), Wu et al. (1997) have clearly shown that this kind of vertical dot
alignment prevails for systems like Ge/Si, InAs/InP or InAs/GaAs. However, in a recent letter (Holy et al.,
1999), it has been claimed that this usual vertical correlation can be affected by a strong elastic anisotropy
leading to a non-top-on-top dot stacking, called here anti-correlation. Our concern in this subsection is thus
to obtain, using the previous method, some insight concerning the following questions:

(Q1) Is the current formalism able to capture the main features of the rather complex elastic interaction
between two strained B-layers separated by an A-spacer?

(Q2) Is the top-on-top vertical correlation more favourable than non-top-on-top vertical correlation even
for structures involving strong anisotropic materials?

(Q3) Is there a critical spacer thickness for which the elastic energy release is optimum?

4.2.1. Vertical correlation versus anti-correlation

In this subsection we shall answer the first two questions, by considering in the following a superlattice
B/A/B/Agupsirate- We have implemented the semi-analytical method exposed in Section 3 and studied the role
of the vertical arrangement of islands between two neighboring B layers separated by an A material spacer.
For fixed (xp,) € [0, ﬂ:}2 we compute the elastic energy release AW = W3 — W, for Ge/Si/Ge/Sigpstrate in a
situation where the geometry of the upper surfaces of B layers, namely 2, and £ are defined by

@) (x,y) = sin (IXTOTQ sin (%n)

and

®5(x,y) = sin (xl-i(-)go n) sin (yI)(;}O n),
respectively, while the upper surfaces of the A layers are considered flat. This is consistent with an initial
deposition on a flat substrate and with our previous results concerning the 2D growth recovery of the cap-
layer.

The symmetry properties of @; and @; allow us to compute values AW only on (0,7) x (0, ). The first
computation was performed on a grid containing 2500 points (50 x 50) for Ge/Si/Ge/Sisubsirate With Ge dot-
layers and a Si spacer-layer thickness of 15 and 48 A respectively. The results AW (xy, ), which is a scalar
function of two variables (x,y), are plotted in Fig. 4 using a plane map with gray-level scaling propor-
tional to the difference W; — W, such that the favourable situation, i.e. small AW, is dark. Fig. 4 clearly
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Fig. 4. The normalized elastic energy release AW (xo, yy) for a three-layered material Ge/Si/Ge/Sispsuate; the thickness of successive Ge/
Si/Ge layers is (15, 48, 15) A respectively. The dark-level indicates a favourable site (small AW) so that this computation shows that
vertical correlation is energetically more favourable than vertical anti-correlation. The symmetry of the gray-level reflects the symmetry
of the elastic problem.
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Fig. 5. Profile curve obtained as a section in Fig. 4 for y, = 0; once again a scale factor ¢ = 10~ in formula (11) was considered.

shows that the vertical alignment is the most favourable situation. To have a quantitative picture Fig. 5
displays the corresponding profile curve obtained at y, = 0.

Similar results have been obtained for InAs/InP/InAs/InPg,psirare and InAs/GaAs/InAs/GaAsgypsirate. ONCE
again the only observed difference concerns a scale effect, as expected for systems having neither the same
lattice mismatch nor the same elastic constants. We conclude that under our current hypothesis vertical
correlation is more favourable than vertical anti-correlation, in agreement with most actual experiments.

4.2.2. Optimum spacer thickness

In this subsection we focus on the effect of the A spacer thickness on the elastic energy release of the
energetically most favourable situation determined above, i.e., the vertical island correlation for which both
upper surface and the first A/B interface are given by
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Fig. 6. Normalized energy release as a function of the spacer thickness 4, for , € (12,250) A, for by = hy = 12 A.

Pi(x,y) = O3(x,y) = sm(lﬁo )Sm<1go )

As a result the elastic energy difference AW = W5 — W, as a function of the A-spacer thickness for the Ge/Si
case is shown in Fig. 6.

For a three-layer material of type B/A/B/Aupsuate the elastic energy release due to the corrugation of both
interface A/B and free-surface can be seen as the sum of three terms: the first one corresponds to the stress
relaxation of the lower B-layer; the second one is the same but for the upper B-layer and the third one is an
interaction term. The main qualitative features in Fig. 6 can be explained as follows. When the A-spacer is
thin, the interaction between the two close neighboring B-layers yields to a large elastic energy in the system
because of a high shear contribution in the A-spacer. When the spacer is thicker, the elastic energy release
gained by the stress relaxation of the B-layers dominates this interaction term, and the total elastic energy
of the corrugated structure becomes less than that of the structure with flat interfaces. The balance is
reached when the energy of the corrugated structure equals that of the structure with flat interfaces, that is
to say, when /1, ~ 10 A for perturbation amplitudes of 1 A. An optimum for the energy release is attained at
hy ~ 50 A. After this point the curve slightly increases up to an asymptotic value corresponding to no
interaction at all between the two B-layers. We conclude that there is an optimum spacer thickness for
which the interaction of the B-layers allows the maximum elastic energy to be relaxed.

As already noted in experiments, this elastic energy minimum is clearly related to the geometrical
characteristics of the undulated B-layer, and especially to its period. In brief, these numerical results in-
dicate that the layer interaction energy is of the same magnitude as the elastic energy release for a single
layer. Actually, this implies that there is an optimum compromise between spacer thickness and strained-
layer relative undulations to relax maximum elastic energy.

5. Concluding remarks

A continuum mechanics approach based on a generalization of Grinfeld’s method has been developed to
calculate the elastic energy for multi-layer heterostructures like those actually grown by MBE for opto-
electronic device engineering. A semi-analytical solution using a small-amplitude perturbation approxi-
mation and Fourier analysis has been proposed.

In the second part special emphasis has been put on the study of superlattices alternating layers of
coherently strained dots with spacer layers which are lattice-matched with a semi-infinite substrate. We
have shown that an energy release can be obtained by undulating the strained layer even if buried under a
cap-layer. By contrast, there is no energy requirement for the cap-layer free surface to undulate owing to
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the increase of the subsequent surface energy. In other words, the total energy minimum for a system
involving a strained layer buried under a cap-layer is an undulation for the strained buried layer but a flat
surface for the cap-layer. The mechanism of interaction between two undulated strained layers separated by
a spacer layer has also been investigated.

The main result concerns the staking mode (either in-phase or out-of-phase) of the undulations. We
found that the in-phase one is the most energetically favourable mode even for strongly anisotropic
material. More to the point, a study of the energy release process versus spacer-layer thickness clearly
demonstrates the way the strained layers interact and relax. To be more precise, if the undulated strained
layer are close enough to strongly interact, the contribution of the interaction between them to the elastic
energy can overwhelm the energy gain due to their own layer undulations. In this case, it is energetically
more favourable for the system on the whole to have no undulations at all for the strained layers than to
have non-propitious shear stresses into the spacer-layer. As the spacer layer thickness increases, the energy
balance becomes more and more favourable to undulations for the strained layers up to an optimum
thickness. Finally when there is no interaction between the undulated strained layers because they are too
far away from each other, the correlated or anti-correlated undulated modes become equally good and both
energetically favourable.
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