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Abstract

In this paper, we analyse the energetics of a multilayered structures like, for instance, B/A/B/Asubstrate. It is well-

known that a coherent pre-strained B layer on an A substrate will generally results in a corrugation of the free-surface

of the B layer. This behavior is the result of stress relaxation in the B-layer and the phenomenon is known as the Asaro-

Tiller-Grinfeld instability. We extend the methods used for a two-layer structure to a multilayered structure and the

main application is the vertical correlation in superlattices. We analyse the energetics of a corrugated B layer which is

grown on a A/B/Asubstrate, where the A layers are flat but the intermediate B layer is already corrugated. We show that

the self-organization of the second B layer, due to elastic interactions in the bulk, depends on the corrugation of the first

B layer and the generic best situation is that of a top-on-top (also called correlated layers) vertical alignment. We also

prove that the interaction energy between two successive B layers attains a maximum at a critical thickness of the

intermediate A layer. This interaction energy has the same order of magnitude as the elastic energy release due to free-

surface corrugation at each upper surface of a B layer.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Grinfeld�s method (Grinfeld, 1986, 1991, 1993) turns out to be extremely fruitful to explain various kinds

of instabilities in numerous fields of physics and chemistry. For example, if a coherent thin film is grown on
a single-crystal substrate by advanced growth techniques such as molecular beam epitaxy (MBE) and if the

film lattice parameter differs from that of the substrate by more than 2%, the thin film growth mode

generally changes from a layer-by-layer two-dimensional (2D) mechanism to a three-dimensional (3D)

mechanism leading to the formation of periodically auto-assembled islands. This phenomenon takes place

when the film thickness has reached a critical value, i.e., the so-called 2D-to-3D growth mode threshold. In

other words, such a coherent island formation is favourable only if it guarantees more misfit strain energy

relief than the concomitant surface energy increase.
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In this paper, we will extend Grinfeld�s approach to the case of a multi-layer heterostructure, viz., a

periodic stack of thin films alternately made of two different mismatched materials on a semi-infinite

substrate. Such a strained-layer superlattice is widely used in optoelectronical devices made from III–V

semiconductors. It is presently well accepted that, when the multi-layer is a succession of coherently
strained island layers (issued from 3D growth mode) and of spacer layers lattice-matched to the substrate,

the strain distribution due to a buried island layer favours a top-on-top island growth (Xie et al., 1995;

Tersoff et al., 1996; Springholz et al., 1998; Zhang et al., 1999; Priester, 2001) leading to a vertical align-

ment. For actual systems grown along (1 0 0) substrates, experiments in Solomon et al. (1996), Teichert et al.

(1996), Legrand et al. (1999), Wu et al. (1997) and Lita et al. (1999) actually show this vertical alignment

between islands belonging to successive layers. However, it has been recently claimed that this widely found

vertical correlation could be affected by strong elastic anisotropy leading to non-top-on-top vertical island

stacking (Spencer et al., 2001; Shchukin et al., 1998; Hol�yy et al., 1999). Moreover, another study has shown
that such a strained-layer superlattice can be either stable or unstable versus growth, and when unstable, the

layer modulation can be in phase, out of phase or complexly related (Shilkrot et al., 2000).

Motivated by the above-mentioned underlying physics, our approach in this paper is based on a

generalisation of Grinfeld�s method (Grinfeld, 1991). It consists in a comparison between the elastic energy

stored in a given multi-layered structure and that of a reference state, extending a previous result in

Danescu (2001).

The paper is organized in two parts. The first is devoted to the continuum mechanics background and

general results valid for multi-layered structures. The main energy estimate for two-layer materials is Eq. (1)
which is straightforwardly extended to the case of multi-layered materials in Section 3.2. From a quanti-

tative estimate we have studied, using a Fourier technique, a first order problem whose solution provides a

valid result (Eq. (11)) for small amplitude perturbations. The second part is dedicated to applications in the

semiconductor crystal growth field. The first case to be studied is the growth of a cap-layer on a strained

film: we predict that, as a consequence of our energy estimate, the cap-layer regains 2D growth giving a flat

cap-layer surface morphology. The second application deals with the controversial problem of correlation

versus anti-correlation island organization in multi-layered heterostructures. We show that, in agreement

with most experiments, correlation is the generic situation. As an additional result we show that there is an
optimum spacer thickness in a periodic multi-layered heterostructure for maximum interaction between

two successive strained layers.
2. Preliminaries

In this paper, we consider the case of a multi-layered material as illustrated in Fig. 1. The successive

layers labelled 1; . . . ; L and heights h1; . . . ; hL are alternately materials of types A and B on a semi-infinite

substrate assumed by convention, to be of type A. Materials A and B belong to the same crystallographic

space group but differ by lattice parameter. Moreover, all interfaces, labelled R1; . . . ;RL�1 (except the last-

layer free-surface) are taken to be coherent. This means that the crystal lattices on contact are distorted in
such a way to match each other on the interface even if they are lattice mismatched when in their natural

(undistorted) configuration. Since our main application to physics concerns the III–V or IV semiconduc-

tors, both A and B are assumed to be linear elastic materials with cubic symmetry (zinc–blende for III–V

semiconductors and diamond for IV semiconductors). Although the general results of Section 3 also hold

for orthotropic materials (see Danescu, 2001), for simplicity, computations in the following are performed

only for cubic materials.

To describe a multi-layered structure with flat interfaces, let us introduce the following notation: let LP 1

be an integer labelling successive layers; as explained above the successive interfaces, denoted Ri, are of type
B/A for even i and of type A/B for odd i. Their vertical locations are denoted hi with respect to the interface



Fig. 1. Diagram of a multi-layered structure with flat interfaces: the meshed interfaces are B/A interfaces (denoted Ri for even i), while
unmeshed ones, are B/A interfaces (denoted Ri for odd i). The thickness of a B layer is small compared to that of spacer layers A. The

vertical positions of the interfaces, from the first interface B/Asubstrate are respectively h1; h2; . . . and the lateral boundary is denoted S0.
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of the first B layer with the A substrate. Let R be a rectangle ð�X0;X0Þ � ð�Y0; Y0Þ and denote X0 ¼
R � ð0; hLÞ, S0 ¼ oR � ð0; hLÞ, Xa ¼ R � ðha�1; haÞ and Ra ¼ R � ha for a ¼ 1; . . . ; L.

For the description of a multi-layered structure with almost flat interfaces we introduce L smooth

functions Ua : R ! R with zero-mean value and R-periodic, and for convenience, we shall impose
maxR jUaj < minðha=2; ha�1=2Þ for a ¼ 1; . . . ; L� 1 and maxR jULj < hL=2. We denote X̂X0 ¼R�ð0;hLþULÞ,
ŜS0 ¼ oR � ð0; hL þ ULÞ, X̂Xa ¼ R � ðha�1 þ Ua�1; ha þ UaÞ and R̂Ra ¼ R � ðha þ /aÞ for a ¼ 1; . . . ; L. The

condition regarding the mean value imposed on functions Ua expresses the fact that the amount of material

in both situations, with flat interfaces and with almost flat interfaces, is the same.

For a linear elastic material with cubic symmetry group and preferred axes ðx; y; zÞ the Hooke tensor has

the general form
Hijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ þ gðdixdjxdkxdlx þ diydjydkydly þ dizdjzdkzdlzÞ;
thus, the non-zero components of the Hooke tensor are (up to well-known permutations due to the

symmetry) in cartesian coordinates
Hxxxx ¼ Hyyyy ¼ Hzzzz ¼ k þ 2l þ g;

Hxxyy ¼ Hxxzz ¼ Hyyzz ¼ k;

Hxyxy ¼ Hxzxz ¼ Hyzyz ¼ 2l:
In the following we shall use ðHA; kA;lA; gAÞ and ðHB; kB; lB; gBÞ, to denote the elastic constants in ma-

terials A and B respectively.
To take into account the misfit between materials A and B, the constitutive relations between the Cauchy

stress tensor, denoted r, and the strain tensor, denoted �, are supposed to hold in the form
r ¼ HA½�


in the substrate and even-numbered layers (i.e., in material A), and
r ¼ HB½�þ �0


in odd-numbered layers (i.e., in material B). The misfit strain �0 takes into account the mismatch between

materials A and B only on its in-plane ðx; yÞ components. Thus, in a configuration where all interfaces are

flat, the vertical deformation will be such that the vertical misfit stress rBez ¼ HB½�0
ez vanishes. If we

denote �0xx ¼ �0yy ¼ m, considering as usual that the misfit shear vanishes, i.e., �0xy ¼ 0, a straightforward
computation shows that the misfit stress is such that rzz ¼ rxy ¼ rxz ¼ ryz ¼ 0, and
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r0
xx ¼ r0

yy ¼ r0 ¼ m 2k

�
þ 2l þ g � 2k2

k þ 2l þ g

�
:

Consequently, with flat interfaces, we are in a typical plane stress situation where
� ¼ m

1 0 0

0 1 0

0 0
�2k

k þ 2l þ g

2
64

3
75; r ¼ r0

1 0 0

0 1 0

0 0 0

2
4

3
5;
also called the pseudomorphic case by physicists.
3. Energy estimates for heterostructures

3.1. Estimate for the bulk energy

We start with the simplest case of a two-layer material, i.e. a structure A/B on an A substrate, also

denoted in the following by A/B/Asubstrate. Following an idea fully developed in Danescu (2001), we shall

compare the elastic energy stored in a structure with flat interfaces, denoted in the following W0, with the

elastic energy stored in the same structure but with almost flat interfaces, denoted W2.

In the reference case, the elastic energy W0 can be computed once we have the solution to the following
boundary value problem

(P0): Find u : X0 ! R3 solution of

(a) divr ¼ 0 in X0,

(b) rn ¼ 0 on R2,

(c) u ¼ 0 on R0,

(d) u ¼ uper: and t ¼ taper: on S0,
(e) sut ¼ 0 on R1,
(f) srtn ¼ 0 on R1,

where uper: and taper: are respectively a R-periodic and a R-anti-periodic boundary conditions.

Under previous assumptions, the unique solution of problem (P0) is u ¼ 0, i.e. the relaxation is vertical

and the stored elastic energy is easily shown to be
W0 ¼
volðX1Þ

2
HB½�0
 : �0:
In the case of almost flat interfaces, in order to compute the stored elastic energy W2, one has to solve the

boundary value problem

(P2): Find u : X̂X0 ! R3 solution of

(a) divr ¼ 0 in X̂X0,

(b) rn ¼ 0 on R̂R2,

(c) u ¼ 0 on R0,

(d) u ¼ uper: and t ¼ taper: on S0,
(e) sut ¼ 0 on R̂R1,

(f) srtn ¼ 0 on R̂R1,

but obviously, the unique solution of this problem is not u ¼ 0. Grinfeld�s method allows W2 to be com-

puted by comparison with W0 as follows: note that, by definition
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W2 ¼
1

2

Z
X̂X1

HB½�þ �0
 : ð�þ �0ÞdV þ 1

2

Z
X̂X2

HA½�
 : �dV :
So that integrating by parts, using the equilibrium equations and the periodicity conditions on the lateral

surfaces, we have
W2 ¼
1

2

Z
oX̂X1

rBn � ðuþ �0xÞdAþ 1

2

Z
R̂R1

rAn � udA:
Using the jump conditions on interface R̂R1, the periodicity and the boundary conditions, we obtain
W2 ¼
1

2

Z
oX̂X1

rBn � �0xdA;
and again integrating by parts
W2 ¼
1

2

Z
X̂X1

rB : �0 dV :
In addition, the symmetry of the Hooke tensor gives
W2 ¼
1

2

Z
X̂X1

HB½�0
 : �0 dV þ 1

2

Z
oX̂X1

u �HB½�0
ndA;
so that, we easily obtain: 1
W2 ¼ W0 þ
1

2
r0 :

Z
R̂R1

u� ndA: ð1Þ
This result shows that only the values of the displacement at the interface R̂R1 contribute to the difference

W0 � W2. This means that whatever the displacements at the upper-surface R̂R2 (that surface is stress-free),

the difference W0 � W2 will not be affected. The physical interpretation of this result will be fully discussed in

the second part of this paper but let us just note here that there will be no reason for corrugations to appear
at the free-surface R̂R2 (upper surface of the first A layer) because the surface energy will always tend to

smooth the free-surface.

3.2. Energy estimates for multi-layer materials

The computation leading to formula (1) can be easily generalized to an arbitrary number of layers. Using

the method detailed above a straightforward computation provides the following general estimate for the

elastic stored energy:

1. For even L:
ŴW

ŴW

e u
¼ W0 þ ð�1Þiþ1 1

2
r0 :

XL�1

i¼1

Z
R̂Ri

u� n: ð2Þ
2. For odd L:
¼ W0 þ ð�1Þiþ1 1

2
r0 :

XL

i¼1

Z
R̂Ri

u� n: ð3Þ
By convention, in (2) and (3) all normal fields ni are oriented toward X̂Xiþ1.
se a� b for the second-order tensor that acts on a vector v as ða� bÞv ¼ ðb � vÞa.
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3.3. Small amplitude 3D perturbations

In order to use (1) for a quantitative estimate of the second term in the right-hand side one has to solve

the full problem P2. Although this is a straightforward task (e.g., using numerical tools) for a two-layer
heterostructure because of the linearity of the problem, for multi-layered structures, it appears to be a

problem of fast increasing complexity in the full three-dimensional formulation. However, for almost flat

interfaces the second term in (1) is small, favouring an approximate estimate using a linearized version of

the problem P2.

Therefore, we shall consider solution u of P2 as a small perturbation of solution u ¼ 0 of P0, i.e.
u ¼ eu
and linearize problem P2 as follows: we fix small R-periodic functions eU1ðx; yÞ and eU2ðx; yÞ, so that the

normals n1 and n2 to R̂R1 and R̂R2, respectively, are
n̂na ¼ ez þ ena; ð4Þ
for a ¼ 1 or 2. The linearized version for the problem P2 is

(P2): Find u : X0 ! R3 solution of the boundary value problem:

(a) divr ¼ 0 in X0,

(b) Condition ðP2Þ � ðbÞ becomes rn̂n2 ¼ 0 on R̂R2, and gives at the first order
H

e
�

H



A½�A
ez ¼ 0 on R2;
(c) u ¼ 0 on R0,

(d) u ¼ uper: and t ¼ taper: on S0,
(e) sut ¼ 0 on R1,

(f) Condition ðP2Þ � ðf Þ is equivalent to
HA½�A
 � eHB½�B þ �0

�
n̂n1 ¼ 0
and taking into account (4) and the fact that r0ez ¼ HB½�0
ez ¼ 0, one finds that, at the first order, on R1

we have
A½�A
 �HB½�B

�
ez ¼ r0n1:
Finally, note that the small-amplitude approximation is pertinent for semiconductor nanostructures

obtained by 2D–3D growth mode transition because usually:

ii(i) the periodicity in the ðx; yÞ-plane of the B-layers is 
300 �AA (attributed to strained-induced lateral auto-

organization of so-grown nanostructures),
i(ii) while the undulated part of the B-layer is 
10–20 �AA high,

(iii) the thickness of the spacer (A-layers) is in the 
50–300 �AA range.

3.4. Fourier analysis for the linearized problem

For the linearized problem P2 that has been just established we shall use a Fourier series technique, and

the energy estimate (1) becomes
W 2 ¼ W0 þ
e2

2
r0 :

Z
R1

u� ndA: ð5Þ
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First, consider the development in double Fourier series in the generic case of a ðx; yÞ-periodic function U
(either U1, U2, or any Ua in the multi-layered case) on ½0; 2p
 � ½0; 2p
 as
Uðx; yÞ ¼
X1
n;m¼0

knm Anm cosðnxÞ cosðmyÞ½ þ Bnm sinðnxÞ cosðmyÞ þ Cnm cosðnxÞ sinðmyÞ

þ Dnm sinðnxÞ sinðmyÞ
;
where the coefficients knm are defined by
knm ¼
1=4 for n ¼ m ¼ 0;
1=2 for n ¼ 0; mP 1 or m ¼ 0; nP 1;
1 for nP 1; mP 1

8<
:

and the ðn;mÞ components of the Fourier series of U are defined as usual as
Anm ¼ 1

p2

Z
½0;2p
�½0;2p


Uðx; yÞ cosðnxÞ cosðmyÞdxdy;

Bnm ¼ 1

p2

Z
½0;2p
�½0;2p


Uðx; yÞ sinðnxÞ cosðmyÞdxdy;

Cnm ¼ 1

p2

Z
½0;2p
�½0;2p


Uðx; yÞ cosðnxÞ sinðmyÞdxdy;

Dnm ¼ 1

p2

Z
½0;2p
�½0;2p


Uðx; yÞ sinðnxÞ sinðmyÞdxdy:
In the following, we shall use the compact notation
U ¼
X1
n;m¼0

Unm � Tnm;
where Unm denotes the ðn;mÞ component of U given by
Unm ¼ knmðAnm;Bnm;Cnm;DnmÞ

and Tnm is defined as
Tnm ¼ ðcosðnxÞ cosðmyÞ; sinðnxÞ cosðmyÞ; cosðnxÞ sinðmyÞ; sinðnxÞ sinðmyÞÞ:

The first-order derivatives ox and oy act as linear applications on a generic scalar function U and if we

introduce
Dx ¼

0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

2
664

3
775; Dy ¼

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

2
664

3
775;
we have ðDxÞ2 ¼ �I, ðDyÞ2 ¼ �I, and oxU ¼
P1

n;m¼0 nðDxUnmÞ � Tnm, oyU ¼
P1

n;m¼0 mðDyUnmÞ � Tnm.
Finally, note that although the functions Ua are defined on ½0; 2p
2, we actually have an ðx; yÞ-periodicity

on a typical domain ½�X0;X0
 � ½�Y0; Y0
. In that case the Fourier coefficients have to be computed as
ÂAnm ¼ 1

X Y

Z
Uðx; yÞ cos np

x
X

� �
cos np

y
Y

� �
dxdy
0 0 R 0 0
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and similar expressions for bBBnm, etc. The only change to be made in the formalism presented above concerns

the form of the coefficients of the differential operators ox and oy , where n and m should be replaced by

np=X0 and mp=Y0, respectively.
Turning back to our main purpose, the general field equations are
ðk þ 2l þ gÞux;xx þ lðux;yy þ ux;zzÞ þ ðk þ lÞðuy;yx þ uz;zxÞ ¼ 0; ð6Þ

ðk þ 2l þ gÞuy;yy þ lðuy;xx þ uy;zzÞ þ ðk þ lÞðux;xy þ uz;zyÞ ¼ 0; ð7Þ

ðk þ 2l þ gÞuz;zz þ lðuz;xx þ uz;xxÞ þ ðk þ lÞðuy;yz þ ux;xzÞ ¼ 0: ð8Þ
Each projection on the ðn;mÞ-component of a double Fourier series becomes a coupled system of ordinary

differential equations completed by the boundary conditions and interface conditions.

We denote by unm the ðn;mÞ component of displacement u, i.e.,
unm ¼ ðUx
nmðzÞ � Tnm;Uy

nmðzÞ � Tnm;Uz
nmðzÞ � TnmÞ;
which introduces 12 unknown functions. It is straightforward to rewrite the field equations as
MnmU
00
nm þNnmU

0
nm þ PnmUnm ¼ 0;
where the prime denotes the derivative with respect to z and the (12� 12) matrices are defined by
Mnm ¼
Mð1Þ

nm 0 0

0 Mð1Þ
nm 0

0 0 Mð2Þ
nm

2
4

3
5; Nnm ¼

0 0 Nð1Þ
nm

0 0 Nð2Þ
nm

Nð1Þ
nm Nð2Þ

nm 0

2
4

3
5;

Pnm ¼
Pð1Þ

nm Pð4Þ
nm 0

Pð4Þ
nm Pð2Þ

nm 0

0 0 Pð3Þ
nm

2
4

3
5;
with 4� 4 blocks entries given by
Mð1Þ
nm ¼ lI; Mð2Þ

nm ¼ ðk þ 2l þ gÞI;

Nð1Þ
nm ¼ ðk þ lÞnDx; Nð2Þ

nm ¼ ðk þ lÞmDy ;

Pð1Þ
nm ¼ �ððk þ 2l þ gÞn2 þ lm2ÞI;

Pð2Þ
nm ¼ �ððk þ 2l þ gÞm2 þ ln2ÞI;

Pð3Þ
nm ¼ �lðn2 þ m2ÞI; Pð4Þ

nm ¼ ðk þ lÞnmDxDy :
Computation of the ðn;mÞ-components of the stress tensor gives
rxx ¼ ðk
�

þ 2l þ gÞnDxUx
nm þ kmDyUy

nm þ kðUz
nmÞ

0
�
� Tnm;

ryy ¼ ðk
�

þ 2l þ gÞmDyUy
nm þ knDxUx

nm þ kðUz
nmÞ

0
�
� Tnm;

rzz ¼ ðk
�

þ 2l þ gÞðUz
nmÞ

0 þ kðnDxUx
nm þ mDyUy

nmÞ
�
� Tnm;
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rxy ¼ l nDxUy
nm



þ mDyUx

nm

�
� Tnm;

rxz ¼ l nDxUz
nm

�
þ ðUx

nmÞ
0
�
� Tnm;

ryz ¼ l mDyUz
nm

�
þ ðUy

nmÞ
0
�
� Tnm;
so that both boundary conditions on the free-surface and interface conditions on the stress, which both

involve rðzÞez, can be expressed as linear combinations of UnmðzÞ and U0
nmðzÞ, in the form
SnmUnmðzÞ þQnmU
0
nmðzÞ;
where
Snm ¼
0 0 lnDx

0 0 lmDy

knDx kmDy 0

2
4

3
5; Qnm ¼

Mð1Þ
nm 0 0

0 Mð1Þ
nm 0

0 0 Mð2Þ
nm

2
4

3
5:
3.5. Boundary conditions and energy estimate

The field equations (6)–(8) thus given have piecewise exponential solutions with respect to z, and inte-

gration constants have to be obtained via interface and boundary conditions. The solution for the ðn;mÞ-
component in the a-layer will be denoted UðaÞ

nmðzÞ ¼ ðUðaÞ
nmðzÞ; ðUðaÞ

nmðzÞÞ
0Þ so that
UðaÞ
nmðzÞ ¼ EðaÞ

nmðzÞU
ðaÞ
nmðha�1Þ;
where EðaÞ
nmðzÞ ¼ expððz� ha�1ÞEðaÞ

nmÞ and
EðaÞ
nm ¼ 0 1

�ðMðaÞ
nmÞ

�1
PðaÞ

nm �ðMðaÞ
nmÞ

�1
NðaÞ

nm

� �
a

:

This introduces 24 integration constants UðaÞ
nmðha�1Þ for each a. In the following it will be convenient to

denote the 12� 12 blocks in the expression of UðaÞ
nmðzÞ as
EðaÞ
nmðzÞ ¼

FðaÞ
nmðzÞ GðaÞ

nmðzÞ
HðaÞ

nmðzÞ JðaÞnmðzÞ

� �
: ð9Þ
At z ¼ 0 condition P2ðbÞ gives
Uð1Þ
nmð0Þ ¼ 0
and the continuity of the displacement at z ¼ h1 and formula (9) give
Gð1Þ
nmðh1ÞðUð1Þ

nmð0ÞÞ
0 ¼ Uð2Þ

nmðh1Þ:

The free-traction condition at z ¼ h2 is
Sð2Þ½Fð2Þ
nmðh2ÞUð2Þ

nmðh1Þ þGð2Þ
nmðh2ÞðUð2Þ

nmðh1ÞÞ
0
 þQð2Þ½Hð2Þ

nmðh2ÞUð2Þ
nmðh1Þ þ Jð2Þ

nmðh2ÞðUð2Þ
nmðh1ÞÞ

0
 ¼ 0
and the continuity of the traction at z ¼ h1 is expressed as
½Sð1ÞGð1Þ
nmðh1Þ þQð1ÞJð1Þnmðh1Þ
ðUð1Þ

nmð0ÞÞ
0 � Sð2ÞUð2Þ

nmðh1Þ �Qð2ÞUð2Þ
nmðh1Þ

0

¼ r0ð�nDxU
ð1Þ
nm ;�mDyU

ð1Þ
nm ; 0Þ: ð10Þ
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To summarize, the boundary conditions can be expressed for a fixed couple ðn;mÞ as
Table

Nume

simula

Si

Ge

InA

InP

GaA

The la

isotrop
I 0 0 0

0 Gð1Þ �I 0

0 Sð1ÞGð1Þ þQð1ÞJð1Þ �Sð2Þ �Qð2Þ

0 0 Sð2ÞFð2Þ þQð2ÞHð2Þ Sð2ÞGð2Þ þQð2ÞJð2Þ

2
664

3
775 �

Uð1Þð0Þ
ðUð1Þð0ÞÞ0
Uð2Þðh1Þ

ðUð2Þðh1ÞÞ0

2
664

3
775 ¼

0

0

Kð1Þ

0

2
664

3
775;
where Kð1Þ denotes, for each fixed couple ðn;mÞ, the right-hand side of (10), viz.,
Kð1Þ ¼ r0ð�nDxU
ð1Þ
nm ;�mDyU

ð1Þ
nm ; 0Þ;
while Gð1Þ, Jð1Þ, Fð2Þ, Gð2Þ, Hð2Þ, Jð2Þ are here, in short, Gð1Þðh1Þ, Jð1Þðh1Þ, Fð2Þðh2Þ, Gð2Þðh2Þ, Hð2Þðh2Þ, Jð2Þðh2Þ
respectively. Turning back to formula (5) we obtain for the elastic energy the estimate
W 2 ¼ W0 þ e2
r0

2

X1
n;m¼0

Z
½0;2p
2

½nðUx
nm � TnmÞðDxUnm � TnmÞ þ mðUy

nm � TnmÞðDyUnm � TnmÞ
dxdy
and taking into account the orthogonality of the components of Tnm, a straightforward computation shows

that
W 2 ¼ W0 þ e2
r0

2

X1
n;m¼0

nDxUx
nmðh1Þ

�
þ mDyUy

nmðh1Þ
�
� Unm; ð11Þ
where Unm are obtained by dropping the knm in the expression of Unm.
4. Applications in semiconductor crystal growth field

Throughout this part, numerical calculations will be performed for three typical couples of semicon-

ductors, viz., Ge/Si, InAs/InP and InAs/GaAs, but this choice does not affect the validity of the above

developed method for other types of materials. Therefore, we have collected in Table 1 all the physical data
needed for the numerical applications, i.e., the lattice parameters (in nm) and the elastic constants in 102

GPa (see Landolt-Bornstein, 1982).

It is straightforward to check that a Ge film is )4.57% compressively strained on a Si substrate, an InAs

film )3.2% compressively strained on an InP substrate and an InAs film )7.17% compressively strained on

a GaAs substrate. The correspondence between the elastic parameters in Table 1 and those used in the first

part of this paper is the following:
k ¼ C12; l ¼ C44 and g ¼ C11 � C12 � 2C44:
1

rical values for lattice parameters, elastic constants and anisotropy coefficients for materials considered in the present numerical

tions

Lattice parameter C11 C12 C44 a

0.541 1.657 0.639 0.796 0.46

0.565 1.240 0.413 0.683 0.49

s 0.605 0.832 0.452 0.395 0.70

0.586 1.011 0.561 0.456 0.68

s 0.565 1.190 0.538 0.595 0.59

ttice parameters (in nm), the elastic constants in 102 GPa. The anisotropy parameter a is defined in (12) and vanishes for an

ic material.
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Furthermore, for cubic materials an anisotropy coefficient a can be defined using either the formula
a ¼ ð2C44 þ C12 � C11ÞðC11 þ 2C12Þ
2C44ðC11 þ C12Þ

ð12Þ
or using classical linear elasticity notations,
a ¼ 1

E
1þ m
E

�
� 1

2G

�
;

where E is the Young�s modulus, m is the Poisson ratio and G is the torsion module, so that, for an isotropic

material a ¼ 0.

Because in a semiconductor crystal, atoms belonging to inner atomic layers far enough from the surface

are almost completely unable to reorganize themselves on the crystal sites (because of the activation energy

required to break the strong diamond or zinc-blende chemical bonding), buried interface morphology is

always considered to be frozen in the following.

4.1. Application (I): growth of a cap-layer

As mentioned in Section 1, when a B layer is coherently grown on an A substrate for example by MBE,

the B layer first grows layer-by-layer (2D-growth mode) with an almost flat surface morphology up to a

critical thickness above which the growth mode changes from this 2D-growth mode to a 3D-growth mode

characterized by the formation of coherent islands. These islands are regularly distributed either directly on

the A-substrate surface or on a flat B layer (in fact, part of the 2D-grown B layer). This fraction of the B

layer which remains flat is called the wetting-layer. This growth mode transition is quite well understood via
the classical explanation given by Grinfeld�s method (Grinfeld, 1991; Danescu, 2001).

The next step in the experimental process is generally to grow an A cap-layer on top of this B/Asubstrate

heterostructure to achieve an electron quantum confinement in the B layer (which in that case becomes a

quantum well in optoelectronic terminology). This A cap-layer is usually lattice-matched with the substrate

and therefore mismatched with the buried B layer. There is a lot of experimental evidence showing that

during its growth the A cap-layer gradually smoothes out and finally recovers a flat 2D-growth mode even

if it had an initially undulated surface (because of the underlying B layer). We shall show in this subsection

that according to the above developed formalism, this 2D-growth mode recovery for the A cap-layer can be
seen as a straightforward consequence of elastic relaxation in a multi-layered heterostructure.

Let us recall that we have already demonstrated in formula (1) that in a two-layer heterostructure A/B/

Asubstrate, the elastic energy difference W2 � W0 depends only on the displacement on the buried A/B interface

(previously denoted R̂R1). However, the surface energy must be taken into account. Considering that the

surface energy is almost proportional to the developed area of the upper free-surface (denoted R̂R2), we

conclude that the minimum total energy of the system, i.e., surface energy plus elastic energy, is fully de-

termined by the surface energy minimum, that is to say, is obtained for the flat-free surface morphology. In

other words, the cap-layer surface smoothes down as the cap-layer grows, a qualitative result in agreement
with experimental results.

To go further, we have implemented the method developed in Section 3, solved the linearized elastic

problem ðP2Þ, and finally computed the energy release using formula (11) for the three above mentioned

systems: Si/Ge/Si(1 0 0), InP/InAs/InP(1 0 0) and GaAs/InAs/GaAs(1 0 0). Note that in this part, we actually

compute DW ¼ W 2 � W0 (instead of DW ¼ W 0 � W2) so that an energy release is achieved when DW is

negative in agreement with the convention commonly used by physicists.

In the present case, the system W 2 under consideration is a reference domain R of a stress-free A crystal

with spatial dimensions 200 �AA� 200 �AA. The geometry of the interface R̂R1 between the first B layer and the A
cap-layer involves only one Fourier component



Fig. 2. Elastic energy release as a function of the spacer thickness in a Si/Ge/Sisubstrate structure; the spacer thickness h2 2 ð12; 200Þ �AA
and the thickness of the first B layer, denoted h1, is 12 �AA. A scaling factor e2 should be considered for comparison with the experiment,

related to the amplitude of the perturbation; here e ¼ 10�1.
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U1ðx; yÞ ¼ sin
x

100
p

� �
� sin y

100
p

� �

for computational simplicity (but note that this does not mean any loss of generality as may be seen from

Section 3). The geometry between the thin film B and the Asubstrate, previously denoted R0, is assumed to be
flat. The reference system W0 is a system with the same amount of material but with all interfaces flat.

First we chose a typical thickness maximum h1 ¼ 12 �AA for the B layer and we varied the thickness h2 of
the A cap-layer in the range (12, 200) �AA, in order to analyze the effect on the elastic energy release. The

normalized energy differences DW (negative, as expected) versus the cap-layer thickness h2 are plotted in

Fig. 2 for Si/Ge/Sisubstrate. The results obtained for InP/InAs/InPsubstrate and GaAs/InAs/GaAssubstrate res-

pectively, have the same qualitative features.

At the beginning of the A cap-layer growth, DW strongly increases, indicating that part of the energy

release obtained by undulating the B layer is now partially wiped away for the system because of the
mismatched interface between the A cap-layer and the B layer. The B layer no longer has a free surface able

to relax elastic energy. However, DW tends to an asymptotic negative value indicative of an energy release.

This upper bound for the energy release clearly depends on the geometry of the buried B layer.
4.2. Applications (II): optimal vertical self-organization

Today, stacking processes are widely-used approaches to improve strain-induced quantum island self-

organization. They consist in the over-growth of a new B layer on the A/B/Asubstrate heterostructure dis-

cussed above, yielding to a new B/A/B/Asubstrate heterostructure. Consequently, the previous cap-layer is
renamed and becomes a spacer-layer since it is now in between two B layers. On the one hand, such

a stacking process strongly enhances the lateral self-organization, a fact that can be perceived here

as an improvement of the modulation periodicity. On the other hand, the strain distribution due to the

islands of the buried B-layer induces a vertical alignment of the latter with those of the above grown B-

layers (Xie et al., 1995; Tersoff et al., 1996; Zhang et al., 1999; Priester, 2001). This top-on-top situation will

be called in the present formalism in-phase or correlated. As an illustration, Fig. 3 represents three suc-

cessive vertically correlated layers (left picture) and three successive vertically anti-correlated layers (right

picture) respectively. If the stacking process is repeated to make superlattices from the elementary motif, it
usually results in vertical heaps of well-organized islands.



Fig. 3. A generic example of three vertical correlated layers (left picture) and three vertical anti-correlated layers (right picture).
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For convenience, Fig. 3 captures only the shape of the undulated A/B interfaces, all B/A interfaces being
flat. For systems grown along (1 0 0) substrates, experiments Solomon et al. (1996), Teichert et al. (1996),

Legrand et al. (1999), Lita et al. (1999), Wu et al. (1997) have clearly shown that this kind of vertical dot

alignment prevails for systems like Ge/Si, InAs/InP or InAs/GaAs. However, in a recent letter (Hol�yy et al.,

1999), it has been claimed that this usual vertical correlation can be affected by a strong elastic anisotropy

leading to a non-top-on-top dot stacking, called here anti-correlation. Our concern in this subsection is thus

to obtain, using the previous method, some insight concerning the following questions:

(Q1) Is the current formalism able to capture the main features of the rather complex elastic interaction
between two strained B-layers separated by an A-spacer?

(Q2) Is the top-on-top vertical correlation more favourable than non-top-on-top vertical correlation even

for structures involving strong anisotropic materials?

(Q3) Is there a critical spacer thickness for which the elastic energy release is optimum?

4.2.1. Vertical correlation versus anti-correlation

In this subsection we shall answer the first two questions, by considering in the following a superlattice

B/A/B/Asubstrate. We have implemented the semi-analytical method exposed in Section 3 and studied the role

of the vertical arrangement of islands between two neighboring B layers separated by an A material spacer.

For fixed ðx0; y0Þ 2 ½0; p
2 we compute the elastic energy release DW ¼ W 3 � W0 for Ge/Si/Ge/Sisubstrate in a

situation where the geometry of the upper surfaces of B layers, namely R̂R1 and R̂R3 are defined by
U1ðx; yÞ ¼ sin
x

100
p

� �
sin

y
100

p
� �
and
U3ðx; yÞ ¼ sin
xþ x0
100

p
� �

sin
y þ y0
100

p
� �

;

respectively, while the upper surfaces of the A layers are considered flat. This is consistent with an initial

deposition on a flat substrate and with our previous results concerning the 2D growth recovery of the cap-

layer.

The symmetry properties of U1 and U3 allow us to compute values DW only on ð0; pÞ � ð0; pÞ. The first
computation was performed on a grid containing 2500 points (50� 50) for Ge/Si/Ge/Sisubstrate with Ge dot-

layers and a Si spacer-layer thickness of 15 and 48 �AA respectively. The results DW ðx0; y0Þ, which is a scalar
function of two variables ðx0; y0Þ, are plotted in Fig. 4 using a plane map with gray-level scaling propor-

tional to the difference W3 � W0 such that the favourable situation, i.e. small DW , is dark. Fig. 4 clearly



Fig. 4. The normalized elastic energy release DW ðx0; y0Þ for a three-layered material Ge/Si/Ge/Sisubstrate; the thickness of successive Ge/

Si/Ge layers is (15, 48, 15) �AA respectively. The dark-level indicates a favourable site (small DW ) so that this computation shows that

vertical correlation is energetically more favourable than vertical anti-correlation. The symmetry of the gray-level reflects the symmetry

of the elastic problem.

Fig. 5. Profile curve obtained as a section in Fig. 4 for y0 ¼ 0; once again a scale factor e ¼ 10�1 in formula (11) was considered.
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shows that the vertical alignment is the most favourable situation. To have a quantitative picture Fig. 5
displays the corresponding profile curve obtained at y0 ¼ 0.

Similar results have been obtained for InAs/InP/InAs/InPsubstrate and InAs/GaAs/InAs/GaAssubstrate. Once

again the only observed difference concerns a scale effect, as expected for systems having neither the same

lattice mismatch nor the same elastic constants. We conclude that under our current hypothesis vertical

correlation is more favourable than vertical anti-correlation, in agreement with most actual experiments.
4.2.2. Optimum spacer thickness

In this subsection we focus on the effect of the A spacer thickness on the elastic energy release of the

energetically most favourable situation determined above, i.e., the vertical island correlation for which both
upper surface and the first A/B interface are given by



Fig. 6. Normalized energy release as a function of the spacer thickness h2 for h2 2 ð12; 250Þ �AA, for h1 ¼ h3 ¼ 12 �AA.
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U1ðx; yÞ ¼ U3ðx; yÞ ¼ sin
x

100
p

� �
sin

y
100

p
� �

:

As a result the elastic energy difference DW ¼ W 3 � W0 as a function of the A-spacer thickness for the Ge/Si
case is shown in Fig. 6.

For a three-layer material of type B/A/B/Asubstrate the elastic energy release due to the corrugation of both

interface A/B and free-surface can be seen as the sum of three terms: the first one corresponds to the stress

relaxation of the lower B-layer; the second one is the same but for the upper B-layer and the third one is an

interaction term. The main qualitative features in Fig. 6 can be explained as follows. When the A-spacer is

thin, the interaction between the two close neighboring B-layers yields to a large elastic energy in the system

because of a high shear contribution in the A-spacer. When the spacer is thicker, the elastic energy release

gained by the stress relaxation of the B-layers dominates this interaction term, and the total elastic energy
of the corrugated structure becomes less than that of the structure with flat interfaces. The balance is

reached when the energy of the corrugated structure equals that of the structure with flat interfaces, that is

to say, when h2 
 10 �AA for perturbation amplitudes of 1 �AA. An optimum for the energy release is attained at

h2 
 50 �AA. After this point the curve slightly increases up to an asymptotic value corresponding to no

interaction at all between the two B-layers. We conclude that there is an optimum spacer thickness for

which the interaction of the B-layers allows the maximum elastic energy to be relaxed.

As already noted in experiments, this elastic energy minimum is clearly related to the geometrical

characteristics of the undulated B-layer, and especially to its period. In brief, these numerical results in-
dicate that the layer interaction energy is of the same magnitude as the elastic energy release for a single

layer. Actually, this implies that there is an optimum compromise between spacer thickness and strained-

layer relative undulations to relax maximum elastic energy.
5. Concluding remarks

A continuum mechanics approach based on a generalization of Grinfeld�s method has been developed to

calculate the elastic energy for multi-layer heterostructures like those actually grown by MBE for opto-

electronic device engineering. A semi-analytical solution using a small-amplitude perturbation approxi-

mation and Fourier analysis has been proposed.

In the second part special emphasis has been put on the study of superlattices alternating layers of

coherently strained dots with spacer layers which are lattice-matched with a semi-infinite substrate. We

have shown that an energy release can be obtained by undulating the strained layer even if buried under a
cap-layer. By contrast, there is no energy requirement for the cap-layer free surface to undulate owing to
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the increase of the subsequent surface energy. In other words, the total energy minimum for a system

involving a strained layer buried under a cap-layer is an undulation for the strained buried layer but a flat

surface for the cap-layer. The mechanism of interaction between two undulated strained layers separated by

a spacer layer has also been investigated.
The main result concerns the staking mode (either in-phase or out-of-phase) of the undulations. We

found that the in-phase one is the most energetically favourable mode even for strongly anisotropic

material. More to the point, a study of the energy release process versus spacer-layer thickness clearly

demonstrates the way the strained layers interact and relax. To be more precise, if the undulated strained

layer are close enough to strongly interact, the contribution of the interaction between them to the elastic

energy can overwhelm the energy gain due to their own layer undulations. In this case, it is energetically

more favourable for the system on the whole to have no undulations at all for the strained layers than to

have non-propitious shear stresses into the spacer-layer. As the spacer layer thickness increases, the energy
balance becomes more and more favourable to undulations for the strained layers up to an optimum

thickness. Finally when there is no interaction between the undulated strained layers because they are too

far away from each other, the correlated or anti-correlated undulated modes become equally good and both

energetically favourable.
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